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Instead of the problematic reasoning presented in the work of D. J. Braun �Phys. Rev. E 78, 016213 �2008��,
a rigorous argument is provided to show the validity of the adaptive controller proposed by Braun under some
particular assumptions. Without these assumptions, this controller may be failed to stabilize the unsteady state,
which is numerically shown by specific examples. Also, the choice of parameters to guarantee the validity of
these assumptions is illustrated.
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Stabilization of unstable equilibrium in nonlinear or even
chaotic dynamical systems via the adaptive controlling tech-
nique has become a focal topic of great importance in the
field of chaos control and complex network synchronization.
Among all the works on this topic, the recent work by Braun
�1� proposed an interesting controller, which takes a full ad-
vantage of the adaptive technique. As was claimed, the con-
troller can stabilize the unstable equilibrium without requir-
ing any explicit knowledge of its position and even the
original system dynamics. However, there is a flaw in the
analytical verification of this proposed controller. This flaw
manifests that the LaSalle invariance principle �2� cannot be
directly used in the proof, and that Braun’s controller may be
failed to stabilize some concrete systems.

In �1�, the author used the following argument: “since f�x�
is locally Lipschitz, it is bounded on its domain D, which
implies ∃l�� such that ∀i, �f i�x��� l�xi−yi� for ∀x�D if
xi�yi.” Clearly, this argument is wrong even when f i�x� is a
linear function and x belongs to any bounded set. For ex-
ample, considering any bounded set D�R and f�x�=�x with
��0, one cannot find any finite constant l such that
�f�x�� / �x−y�= � �x

x−y �� l for any x�y�D, because the two-
variable function g�x ,y�= � x

x−y �= � 1
1−y/x � is an infinitely large

quantity in the bounded D even if x�y. Thus, l, if existing,
is +�. This implies that V with any finite L, as constructed in

�1�, is not a Lyapunov function, i.e., V̇�0 is not valid, and
that the LaSalle invariance principle cannot be adopted yet.
Therefore, the problematic argument in �1� leads to the fail-
ure of the proof as well as to the failure of the stabilization in
some specific numerical simulations. However, in light of
dynamical systems theory, we provide proof for the validity
of this controller under some assumptions as follows.

Consider those bounded trajectories generated by the
adaptively controlled systems proposed by Braun

ẋi = f i�x� − ki�xi − yi� ,

ẏi = �i�xi − yi� ,

k̇i = �i�xi − yi�2, i = 1,2, . . . ,n , �1�

with the continuous vector field f i�x� and the variable s
= �s1 , . . . ,sn���Rn in which s=x, y, or k. Here, �i and �i are
parameters as described in �1�. For each bounded trajectory
��t ;x0 ,y0 ,k0�= �x�t ;x0 ,y0 ,k0� ,y�t ;x0 ,y0 ,k0� ,k�t ;x0 ,y0 ,k0��
with the initial data �x0 ,y0 ,k0�, we have the existence of
limt→� k�t�=k� because of the monotonicity and bounded-
ness of the coupling gain variable k�t�. Then integrating the
derivative of this variable yields:

�
0

+�

�xi�s� − yi�s��2ds � + � .

This implies that each xi�t�−yi�t� is L2-integrable. Further-
more, we have the equation:

ẋi − ẏi = f i�x� − �ki + �i��xi − yi� .

Then, ẋi− ẏi is uniformly bounded due to the continuity of the
vector field and the boundedness of the trajectory as men-
tioned above. This, together with the L2 integrability and
continuity of xi�t�−yi�t�, yields that the error xi�t�−yi�t�→0
as t→+�. Moreover, since the bounded trajectory is gener-
ated by the autonomous system �1�, the Omega limit set

���x0,y0,k0�� = ��x�,y�,k�� � R3n���tn;x0,y0,k0�

→ �x�,y�,k��,�tn�n=0
� → + �,n → ��

of the bounded trajectory is nonempty, connected, and invari-
ant �3�. In particular, restricted in the Omega limit set,
si�t ;x� ,y� ,k�� is a constant function for each s=x ,y ,k due to
ṡi�t�	0 in the invariant limit set. Thus, ���x0 ,y0 ,k0��
= ��x� ,y� ,k���R3n � f i�x��=0,x�=y��. Since the limit set is
connected, ���x0 ,y0 ,k0�� only contains single equilibrium if
those equilibria of uncontrolled nonlinear system separately
lie in Rn �ESL�. Therefore, under the assumption �ESL�, both
x�t� and y�t� tend toward the equilibrium, which means the
controller is feasible for all bounded trajectories of system
�1�.

If the boundedness of all the trajectories of the controlled
system �1� cannot be guaranteed, the stabilization with
Braun’s controller may be very slow and even failed though
the dynamical behavior of the uncontrolled system is

*Author to whom correspondence should be addressed. FAX:
	86-21-6564-6073; wlin@fudan.edu.cn

PHYSICAL REVIEW E 81, 038201 �2010�

1539-3755/2010/81�3�/038201�3� ©2010 The American Physical Society038201-1

http://dx.doi.org/10.1103/PhysRevE.81.038201


bounded and the corresponding vector field is globally Lip-
schitzian. To illustrate this, we consider the following three-
dimensional ordinary differential equations as an uncon-
trolled system:

ẋi = − xi + 

j=1

3

wij sin��xj�, i = 1,2,3, �2�

where the symmetric connection matrix is select to be

W = �wij�3
3 = �− 1 1 1

1 − 1 1

1 1 − 1
� ,

and the parameter �=10. System �2� can be regarded as a
particular kind of artificial neural network model with sinu-
soidal activation functions. With the above parameters, sys-
tem �2� is globally Lipschitzian and exhibits periodic oscil-
lation, as shown in Fig. 1. According to system �2� and
Braun’s controller, we design the adaptively controlled sys-
tem by

ẋi = − xi + 

j=1

3

wij sin��xj� − ki�xi − yi� ,

ẏi = �i�xi − yi�, k̇i = �i�xi − yi�2, i = 1,2,3, �3�

where the parameters are taken as �i=2 and �i=5 for each i
in the following numerical simulations. Contrary to the ana-
lytical result given in �1�, the stabilization is unsuccessful
with particularly selected parameters and initial values. As
shown in Fig. 2, the controlled state variables xi and the
estimators yi, though approaching synchronization, are not
be stabilized to any equilibria of system �2� through the du-
ration of simulation. In particular, as depicted in Fig. 2, those
coupling gain variables ki, though increasing slowly and
monotonically, are not surely controlled by some upper
bounds. Moreover, as shown in Fig. 3, each quantity

li = 
− xi + 

j=1

3

wij sin��xj����xi − yi� ,

which is defined as the Lipschitz constant in �1�, can be
tremendously huge. Therefore, the boundedness of all the
trajectories of system �1� including the coupling gain vari-
ables ki is crucial to a successful stabilization with Braun’s
controller. Without guaranteeing this boundedness, the stabi-
lization probably can be very slow and even failed in prac-
tice.

It is noted that the boundedness requirement is also nec-
essary in any stability analysis involving the use of the La-
Salle invariance principle. Without verifying or assuming, a
priori, the boundedness of the whole system, one cannot use
the LaSalle invariance principle. In �1�, the only assumption
on the boundedness of the uncontrolled and controlled state
variables x is inadequate, because the whole system also in-
cludes the estimators y and the coupling gain variables k.
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FIG. 1. �Color online� The dynamical behavior of the uncon-
trolled system �2� in the x1-x2-x3 phase plane �a� and in the state
variables versus time plane �b� with the initial value �−2,2 ,−1��.
Here and throughout, the MATLAB tool ODE45 is utilized to solve
the continuous system.
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FIG. 2. �Color online� The dynamical behavior of the controlled
system �3� shows an unsuccessful stabilization of system �2�
through the duration of simulation. Here, the initial values for con-
trolled system �3� are taken as �−2,2 ,1 ,0 ,0 ,0 ,50,50,50��.
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FIG. 3. �Color online� The variation in each li with the time
evolution along the trajectories shown in Fig. 2.
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Besides, the boundedness assumption on the whole system
and the LaSalle invariance principle together cannot ensure
the validity of the Braun’s controller, since we have ex-
plained that V is not a Lyapunov function. Therefore, as per-
formed above, more elaborate analysis in light of dynamical
systems theory should be adopted to verify this validity.

In general, the direct proof of the boundedness of some of
or all of the trajectories produced by the controlled system
�3� �not by the uncontrolled system� is really hard; however,
it can be verified for concrete system either numerically or
theoretically. To ensure the existence of the bounded trajec-
tories and the stability of the controlled goal in practice, the
initial value of ki and the values of �i and �i should be
particularly adjusted. For the controlled system �2�, we have
shown unsuccessful stabilization above; however, we can
also choose ki�0�=10 to numerically guarantee the bounded-
ness, and then get a practical stabilization �see Fig. 4�. Fur-
thermore, to clearly illustrate the role of �i, we simply take
the linear function f�x�=�x as an example. Then, x�=0 is the
equilibrium of the uncontrolled system, and the correspond-
ing Jacobian matrix of the controlled system around the equi-
librium �0,0 ,k�� is

J = �� − k� k� 0

� − � 0

0 0 0
� ,

in which k� is a positive number. Clearly, aside from the zero
eigenvalue, the other two eigenvalues of J being strictly

negative becomes the condition for the stability of the equi-
librium �0,0 ,k��. In fact, once this condition is satisfied, both
x�t� and the error x�t�−y�t� are bounded and converging ex-
ponentially in the vicinity of the equilibrium, so that k�t�
=k�0�+�0

+��x�s�−y�s��2ds is convergent to some k�. To guar-
antee the validity of this condition, we must have �−�−k�

�0 and ���0. Since k� can be an arbitrarily positive num-
ber dependent on k�0�, the first inequality is always valid for
any pair of � and �. If ��0 and thus x�=0 is an unstable
equilibrium of the uncontrolled system, � must be taken as a
negative number to satisfy the latter inequality; if ��0, �
must be positive. Mathematically, the above result based on
the linearization analysis is only valid for the initial data in
the vicinity of the equilibrium; however, numerical simula-
tions manifest that the result still holds away from the equi-
librium. It is noted that the effect of the sign of � has been
numerically exerted in the saddle stabilization of the Lorenz
system in �1�, where, however, its effect on the boundedness
of the controlled systems was not analytically discussed.

Moreover, if the assumption �ESL� is violated, the uncon-
trolled system has continuous equilibria. Theoretically, the
convergence of x�t� and y�t� cannot be guaranteed, and both
variables may slowly fluctuates among some interval though
each xi�t�→yi�t� as t→+�. This means that the proposed
controller may be infeasible to stabilize the unstable equilib-
rium in such a case. To be candid, in practice, the conver-
gence of x�t� and y�t� is always valid numerically, and then
both x�t� and y�t� surely converge to the points embedded in
the continuous equilibria.

This Comment has pointed out a flaw existing in the ana-
lytical argument in �1�. It is the flaw that motivates us to
produce more assumptions and conditions ensuring the va-
lidity of Braun’s controller. Appropriately adjusting the pa-
rameters and initial values to meet those assumptions makes
Braun’s controller more useful in chaos control. Moreover, it
is valuable to mention that numerical verification can only
show boundedness of orbits and successful or failed stabili-
zation in a finite duration. More practical conditions as well
as more convincing counterexample with theoretical argu-
ments are expected.
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FIG. 4. �Color online� Successful stabilization of the controlled
system �3� with initial values ki�0�=10. The initial values for the
state variables xi and estimators yi are the same as those in Fig. 2.
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